Comparison Between Zagreb Eccentricity Indices and the Eccentric Connectivity Index, the Second Geometric-arithmetic Index and the Graovac-Ghorbani Index

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison Between Zagreb Eccentricity Indices and the Eccentric Connectivity Index, the Second Geometric-arithmetic Index and the Graovac-Ghorbani Index

The concept of Zagreb eccentricity indices ( 1 E and 2 E ) was introduced in the chemical graph theory very recently. The eccentric connectivity index ( ) c ξ is a distance-based molecular structure descriptor that was used for mathematical modeling of biological activities of diverse nature. The second geometric-arithmetic index 2 ( ) GA was introduced in 2010, is found to be useful tool in QS...

متن کامل

On the Graovac-Ghorbani index

For the edge e = uv of a graph G, let nu = n(u|G) be the number of vertices of G lying closer to the vertex u than to the vertex v and nv= n(v|G) can be defined simailarly. Then the ABCGG index of G is defined as ABC...

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

Eccentricity Sequence and the Eccentric Connectivity Index of Two Special Categories of Fullerenes

In this paper, we calculate the eccentric connectivity index and the eccentricity sequence of two infinite classes of fullerenes with 50 + 10k and 60 + 12k (k in N) carbon atoms.

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Croatica Chemica Acta

سال: 2016

ISSN: 0011-1643,1334-417X

DOI: 10.5562/cca3007